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An earlier paper [l] gave the exact solutions for cylindrical and spherical waves, 

which made possible the solution of the problem of diffraction of waves due to 

a three-dimensional and a plane source. In the present paper the class of exact 

solutions is expanded significantly. The problem of diffraction of a wave due to 
a plane source by a semi-infinite plate is solved in a finite form. 

1. We know [l] that if a solution of the wave equation 

a%@ @co _+-_-- a2cD 
f3,z a?/ -?--=o &2 (1.1) 

is homogeneous in t and r = f~2 + 9% of degree - t/s and has the form @_B,~ (t, 

r’, e), then 4>_,,, (t + a (t” - P), r, 0) , where c1 = const and 6 = arctg (y / x), 
also satisfies (1.1). On the other hand, the relation connecting the homogeneous solu- 
tions of the wave equation which have different degrees, is well known. In particular, if 
O. and @, are solutions of (1.1) homogeneous in t and r of degrees 0 and n , respect- 
ively, and such that (C-p, / t”) \+r = @a It=r, then they are connected by the following 

Let us now set, in a purely formal way, the sum of the solutions of the wave equation, 
using the relation (1.2) 
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This infinite sum can be replaced by the expression 

CD 
CD0 (t -+ u (P-- r2). r, 6) 

= 1/l -,-22t+c@(t2--rTf) (1.3) 

Thus, in addition to the Filippov theorem Cl]* we have the following assertion : if @, (t, 

I”, 0) is a solution of (1.1) homogeneous in 1 and r and of degree 0 , then the expres- 
sion (1.3) is also a solution of the wave equation, 

Using both results, we can formulate the following problem: to find a function 17 (5, 
y, t) such that the function 

cp = 3 (J, y, t) @B (X, Y, TI (1.4) 

satisfies the wave equation (1, l), here cf>, is a solution of the wave equation written in 
the coordinates X, ‘Y and 1’ where X = z, Y = y and T - t i- a ( tZ - r’) , 
homogeneous in X, Y and T and of degree p . Substituting the product (1.4) into 

(1.1) and making use of the relations 

(1.51 

since CD, is a homogeneous function, we have 

Therefore the expression (1.5) can be written in the form 

We shall require the homogeneous function (Dp to be arbitrary, and in that case the 

expressions within the curly brackets in (1.6) must each be separately made equal to 
zero. We obtain three equations for determining 7, and passing in these equations to 

the new variables ~CJ,X = p, 2ay = v and 2at = -c, we have 
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The second equation of (1. ‘7) shows that q depends on p and z only (it is independent 

of 8 = arctg (v i p)). We then have 8~ I dv = sine, a~ i dp 6%~ I dp = cos 0 dqldp 
and the remaining equations of (1.7) become 

The second equation of (1.8) has the following solution: 

11= 
f (ci) 

(r + #W/* ’ g = ‘Z; i2 

Substituting this expression into the first equation of (1.8) we obtain 

(E” + 4t) f” + C@ + 3)(2 1” 5) f’ + llq (Zf3 5 I)(33 + 3)f == 0 

which has the following solution: 

f (8 = c, / p++ + cz / (E + 4)~+‘/~ 

where C, and C, are constants. 

Let us select a solution which has no singularities at z = p. Then the solution of the 
problem given above is 

@= 
@p I? ?/I t + a (t* - rZ)1 

[(j + &)2 - &.2] f3+5’e 
CL 9) 

The result given in El] and the relation (1.3) follow from (1.9) as particular cases. 

2. Filippov also mentions in [I] the method of constructing the solution of the prob- 
lem of diffraction of a spherical wave due to a source , by a wedge. This case can also 
be similarly generalized to an arbitrary function homogeneous in t and r=J/m of any 

degree, provided that this function is a solution of (1, I), As before, we formulate the 
following problem: to find a function q (5, y, 2, t) such that the function CD = q@, 

(T, P, 0) satisfies the wave equation 

EE++~+fL++_= WP () 
852 

provided that @, is of degree p , homogeneo~ in p and P and that it satisfies the 

equation WDB 1 it@,p -+_-_ + 
1 @@a @CD,, 

_..---I= 
dP% P ar P2 iXV aT2 O 

(p z r, (_) = 0, T - t -I- a(t2 - r2 - 2”)) 

We omit the cumbersome manipulations analogous to those given in Sect. 1 and write 
the equations which the function ?J must satisfy: 

(p = 2w, 5 = 2az,7 = 2at) 

The last equation of (2.1) shows that 
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Substituting this into the second equation of (2.1) and introducing a new variable o = 

(E + 2)/2,we obtain 

(1 -ha) L?!&+(,_,,,$!$_ -- 2h6 a2w (2.2) 
aha 

Thus, compared with the problem of Sect. 1, the present problem has a wider class of 

solutions which now depend on two variables. Without going into a detailed analysis of 
(2.2) we note that it has been studied extensively. In particular, when jj = -1 , the 

equation (2.2) reduces to the Laplace’s equation in R and 9, where 

R 
I 1 

= v-_t - v’ 
---1, 
0% t?? 

*= arctg (G) 

Let us find a solution independent of h which will be required in what follows. This 
solution is 

Selecting a solution which has no sing~arities at E = 0 we obtain the following par- 
ticular solution of the above probl$m : 

a)== 
cDB [t + a (t2 - J.2 - z?), r, 01 

c&2 - &2]P+r 
(2.3) 

[(at + I)2 - 

Omitting the derivation we show another result obtained by analogous transformations. 

If Dp (Q, t, 0, w) is a function of order j3, homogeneo~ in t and 

cr=li 5% + ya + z2 

and satisfying the wave equation 

then the function cI, _ @a (Q, t + a (t2 -. 4% %a) - 
[I + 2at -i_ a2 (t2 - q2)]@+l 

(2.4) 

also satisfies this wave equation. It is interesting to note that the function q in (2.4) is 
identically equal to ?I in (2.3). 

3. let us consider a somewhat different problem. let tDg (X< Y, T) be a fiction 
of degree $ homogeneous in X, Y and T and satisfying the wave equation 

TC 

a2qd awp a*a$ 
-+- 
ax2 ay2 - - = aT2 

0 (3.1) 

II 

x = z + a (t2 - T-Z), Y = y, T = t + a (t” - ra?l) 
then we require to find q (2, ZJ, t) such that the function cf, = q (5, y, t) @a(X, 

Y, 2’) satisfies the wave equation (1. I). 
This problem also has a solution. We find r\ from the following system of equations: 
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From the second equation of (3.2) it follows that ‘r~ must depend on two variables only 
& = (t - x> and & = z (E - CC) - ‘/sy”. Introducing the new variables 5 = a 

(t - 3) and 5 = a2 (X (t - X) - lizy2), we use them to write the first and third equa- 
tions (3.2) as follows : 

(E”-25)+2E $+(2~+3)+=0 

(E + EZ - 26) $- --(liaE)~-(2~+~),=0 

Without going into an extensive analysis of the problem of obtaining a sim~taneo~ solu- 
tion of the above system of equations we note that the system admits a solution indepen- 
dent of 5 

3 = c/ (h -t_ t - $+‘!:, (h = 1 i 2a) 

The wave equation is invariant under the rotation of the coordinate axes about the origin, 

therefore we can choose z = T cos (y -k- 6) and y = r sin (y -i- 6). Then 

CD&,( r ccs (r + 0) + & (t” - r2), r sin (7 -i- O), 

t +~(tz-rz) 
.J/ 

fh + t - rcos (7 -j- El)]P’“z 
(3.3) 

will be a solution of the wave equation (X.1). 

4. We shall use the simplest examples to illustrate the application of the results ob- 

tained to the problems ofdiffraction, We flit note that the expression (1.9) enables us 

to use the solution of the plane wave diffracted by a wedge to find the solution of the 

problem of diffraction of the corresponding cylindrical wave. In exactly the same way 

the expressions (2.3) and (2.4) enable us to use the existing solutions of the problemsof 
diffraction of the plane waves by the bodies consisting of semi-infinite straight linesand 

planes, to obtain solutions of the problems of diffraction of the spherical waves by the 

same bodies. 
Let a unit plane wave H (t - r cos (y -+ 8)) impinge on a semi -infinite plate con- 

taining the ray 0 = arctg (y J CC) == cf . A solution of the problem of diffraction of 

this wave by the plate is given within the circle r < t. by the expression 

Then the problem of diffraction for a cylindrical incident wave defined by the expression 

CD = V2RJ-f ( (R, -+ t)” - P,“) / 1(2R, + ty - r2P 
Pq2 = Ro2 + 2R,rcos (y + 0) + r2 (a = 1 / 2R0) 

where H is a unit function, is solved with the help of (1.9) within the circle r -< t, 
and the potential is expressed by 

a, = CD+ + CD- 
(4.2) 

- v - P-&2) + 
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2 1/2X 
arctg 

2r . rlt9 
?I t,srn---- 2 )1 

Pk2 = R,” f 2R,r cos (7 5 0) -t_ 9, T = t + & (t” - r?) 

For the second example we shall use the results of Sect. 3. If a plane wave H (r - 

rcos(y+O)) P’g im m es on the same plate, then the corresponding incident wave which 

is also plane will be defined, by virtue of the expression (3.3), by the potential 

cft = w (t - r cos (y + 6) ) : ]h _t t - r ms (y + ql”z (4*3) 

Returning to (4.1) we see that this expression is a sum of two functions @,,+ -/- aO- , 
each of which satisfies the wave equation, and QO + corresponds to the incident wave, 

while @- corresponds to the reflected wave. We describe the diffraction of the wave 

defined by the potential (4.3) by forming, in the same way, two functions corresponding 

to the incident and the reflected waves 

F+ zxz 
,1 

.(/h t t - r cos (y f 0) 
&ff(t--cos(y+Q)+ 

$ arctg 
il 

’ / 2p+ sin ~ 

Y-Y+ 2 _ ‘!I 

P,= r”+$-( 
I 

1” - r2) CoS (7 -t_ 0) -j- -& (t” - r2)2jlh 

8, = a&g rsin(r+0) 
rcos(~+0)+(t2-r~)/2h T T = t + -& (t” - 9) 

(4.4) 

By virtue of (3.3) each of the functions Ff and F- satisfies the wave equation and their 
sum also satisfies the boundary conditions at r T= t as well as the condition of zero 

leakage at the plate. 
Consequently the sum F+ + F- is a solution of the problem of diffraction by asemi- 

infinite plate of a wave defined by the expression (4.3). 

When h tends to zero, the second term in (4.4) within the square brackets tends to zero 
for r < t. Then the solution of the problem of diffraction by a semi-infinite plate 
within the circle r ( t , of the wave defined by the potential 

ctj =:- H (t - r cos (y + 8) ) / It - rcos (y + !3)1’:* 

will be given by the following sum 

@ _= &+ 4. <11-, a* = ‘ia Ic - rcos (y + e)]-‘2. - 

In this case we follow [l], or use the expression (1.9) with (5 = - I/?, to obtain the 
solution of the problem of diffraction of a wave due to a plane source (r < t) by a 
semi -infinite plate 

CD = a4 + @-, a)+- = + [(RO + t)” - R02 - 2R,,r cos (7 & 0) - r2j-‘,‘a 

provided that the incident wave is specified by the potential 

cD = Ii ((Rn + t)Z - RoZ - 2&r cos (7 + 9) - r2) 

[f Ro + t)?- Ro? -- 2Rorcos (r -'- 6) - .+ 

The author thanks Iu. A. Dem’ianov for useful discussions, 
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The dynamic stability of a thin plate in supersonic gas flow at low Strouhal num- 

bers is examined. The aerodynamic forces are determined on the basis of the 
same partition mesh as for the representation of the plate as a model of finite 

elements. Rectangular elements with four coordinates at each node are used. 
The number of dynamical variables is diminished to one at each node as a result 
of reducing the order of the equation of motion. Examples of computing the 

plate vibrations in a vacuum and in fluid flow are presented. 

Use of the finite-element method in aeroelasticity problems in the general case when 
the aerodynamic effects are determined numerically, is connected with great difficulties. 

This is related to the fact that a partition mesh not associated with the finite-element 
model representing the system is used to compute the aerodynamic forces. The aerody- 
namic mesh ordinarily consists of a comparatively large number of rhomboidal [l] or 
rectangular @] cells and changes as the Mach number varies. The finiteelement mesh 

has a larger spacing and is coupled rigidly to the structure. Changing it requires signifi- 

cant computational efforts. 
It seems expedient to develop that approach to aeroelasticity problems in which the 

computation of the aerodynamic effects is performed on the basis of the same partition 
mesh as the description of the elastic-mass properties of the system. In order that an 
increase in the mesh spacing should not reduce the accuracy of the aerodynamic force 
calculation, the downwash within the limits of the cells is represented as a power series 
of the coordinates. The series coefficients are determined completely by the vector of 
the generalized coordinates of the element. Using the ordinary conjugate conditions of 
elements, the equation of motion of the elastic plate model in supersonic flow can be 
written in closed form without introducing a priori vibration modes 

N 

W -1 h2M)q -= Q,, Q,= 2 hnA,q (0.1) 


